
Using VegX with NVS

Introduction

This document describes the implementation of export and import of NVS data to/from VegX, using .NET Visual Basic (still in progress).

A. Export To VegX

[image: image5.emf]

Cod es

NVS Databank

[image: image6.emf]

DATASET

[image: image7.emf]

VegX File

1. Simplified Schema

A dot.NET dataset (called dsNVS) has been developed with a schema that is a simplified version of the NVS database:

· Where observation data is spread across multiple related tables, it is combined into one de-normalised table.

· Code values are put into tables where there are code lookup IDs.

· Units of measurement are recorded as fields in the observation tables, and can be converted to standard units.

[image: image1]
2. Load Dataset

SQL statements or stored procedures are used to load the dataset from the live NVS data.
Note: For efficiency, the dataset makes use of relationships and field expressions. Alternatively the data could be loaded from the NVS warehouse which has the same simplified structure as the dataset, and the dataset not use field expressions.

3. XSLT to Transform to VegX

An xslt file has been developed (in progress) which transforms from the simplified NVS schema to the VegX schema. This is done manually rather than using software such as Map Force, in order to keep it readable and able to be customised. As shown in the excerpt below:

· the dataset type is defined as a namespace in the stylesheet element: xmlns:ds="http://tempuri.org/dsNVS.xsd"
· this namespace is used for the tables and fields from the dataset: "ds:ProjectName"

· multiple observation tables are unioned into single VegX collections
(eg Diameter and Orthogonal Width into IndividualOrganismObservation)

[image: image2]
4. Apply XSLT in code

The Visual Basic code to apply the XSLT to a loaded dataset (of type dsNVS) and create a VegX file is simply:

Public Shared Sub ExportXML(ByVal ds As dsNVS, ByVal strFilename As String)

 Dim xmlDoc As System.Xml.XmlDataDocument = New System.Xml.XmlDataDocument(ds.Copy)

 Dim xslTran As System.Xml.Xsl.XslCompiledTransform = New

System.Xml.Xsl.XslCompiledTransform

 xslTran.Load(NVSClassLibrary.ClientDataAccess.ResourcesFolder + "\NVS_VegX.xslt")

 Dim objStream As New FileStream(strFilename, FileMode.Create)

 xslTran.Transform(xmlDoc, Nothing, objStream)

 objStream.Close()

 End Sub

B. Import From VegX

In .NET there are (at least) 2 ways to load data from an XML file into a database:

· Load the XML file into a dataset and process the tables created.

· Load the XML file into an XML document and process the tree created.

Either way, new IDs have to be assigned in the database and it is necessary to keep track of the VegX to NVS ID mappings while nested data is being imported.

5. Load VegX Dataset

The import of NVS from VegX is being implemented using the dataset method. The Visual Basic code to read a VegX file into a generic dataset is simply:

Dim ds As New DataSet = ds.ReadXml(strFilename)
The resulting dataset has the following tables:

vegX, projects, project, plots, plot, relatedPlot, plotObservations, plotObservation…

Ie Nested data is put into separate tables with a foreign key to the parent data.

6. Upload to NVS Databank
Below is an outline of the procedure to upload data from the VegX dataset into NVS Databank. Note that a ‘dictionary of mappings’ means a searchable list of dataset IDs and their new NVS Databank IDs.

[image: image3]
The NVS Databank records PlotObs parent relationships so the plot names and relationships are used to derive these.
Below is sample code for uploading one table (PlotObservation) for a given project, using and updating mappings and matching the VegX fields to NVS fields:

[image: image4]
The Utility.StartInsertStatement function creates a the first part of a SQL Insert statement, finding all the fields in the given table.
�

�

�

XSLT

Project

Plot

PlotObservation

TaxonCategoryValue

Tier

TaxonSimpleValue

TaxonPercentageCover

Diameter

OrthogonalWidth

Taxon

Item

GroundCover

AbsoluteCoord

MeasurementCategory

MeasurementUnit

Method

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:ds="http://tempuri.org/dsNVS.xsd" xmlns:dwg="http://rs.tdwg.org/dwc/geospatial" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>

<xsl:template match="/">

<vegX>

. . .

<projects><xsl:apply-templates select="//ds:Project"/></projects>

<individualOrganismObservations>

	<xsl:apply-templates select="//ds:Diameter"/>

	<xsl:apply-templates select="//ds:OrthogonalWidth"/>

</individualOrganismObservations>

. . .

</vegX>

</xsl:template>

<xsl:template match="ds:Project">

	<project>

		<xsl:attribute name="id"><xsl:value-of select="ds:ProjectID"/></xsl:attribute>

		<title><xsl:value-of select="ds:ProjectName"/></title>

		. . .

</project>

</xsl:template> . . . other templates etc

</xsl:stylesheet>

Open a connection to NVS Databank, within a Transaction

Declare dictionaries of PlotID mappings, Plot names and Plot parent IDs

Upload Plots, while updating the plot dictionaries

Declare dictionaries of TaxonID mappings and TaxonCodes

Declare dictionary of IndividualItemID mappings

Upload IndividualItems while updating the dictionary

For each Project

Declare dictionary of PlotObsID mappings

Upload PlotObservations*, using the Plot dictionaries and updating the PlotObsID dictionary

Upload AggregateObservations*, using the PlotObsID dictionary and updating the TaxonID dictionary

Upload IndividualObservations*, using the PlotObsID and IndividualItemID dictionaries and updating the TaxonID dictionary

	* use the Protocol, Method and Attribute tables to find or add “Authority” data as required

	* add Taxon data as required	

Commit the transaction and close the connection

Dim lstColumnnames As New List(Of String)

Dim strInsertCommandBase As String = NVSClassLibrary.Utility.StartInsertStatement("tblPlotObs", 1, objConnectionTo, lstColumnnames)

For Each objRow As DataRow In ds.Tables("PlotObservation").Select("ProjectID=" + intProjectID.ToString, "ID")

 Dim strInsertCommand As String = strInsertCommandBase

 Dim intID As Integer = CInt(objRow("ID"))

 Dim intPlotID As Integer = CInt(objRow("PlotUniqueIdentifierID"))

 Dim intParentID As Integer = -1

 For Each strColumnName As String In lstColumnnames

 Select Case strColumnName.ToLower

 Case "projectid"

 strInsertCommand += intNVSProjectID.ToString + ","

 Case "plotid" ‘Use PlotMappings

 strInsertCommand += objPlotMappings(intPlotID).ToString + ","

 Case "plotobsstartdate" ' NVS.PlotobsStartdate = VegX.obsStartDate

 Dim strValue As String = GetFieldValue(ds, objRow, "PlotObservation",

 "obsStartDate", True, "")

 strInsertCommand += "'" + strValue + "',"

 . . .

 Case Else

 strInsertCommand += "NULL," ' NVS does not use all VegX fields

 End Select

 Next

 objUploadCommand.CommandText = strInsertCommand.Substring(0,

 strInsertCommand.Length - 1) + ");SELECT @@Identity"

 objIDnew = objUploadCommand.ExecuteScalar()

 ‘Update PlotObsMappings

 objPlotObsMappings.Add(intID, CInt(objIDnew))

Next

